


HQExoTM Exosome-PCS-500-011

Catalog: Exo-SC01

PRODUCT INFORMATION

Name	HQExo [™] Exosome-PCS-500-011
Cat No.	Exo-SC01
Source	Exosome derived from human pre-adipose derived mesenchymal stem cell (PCS-500-011)
	Exosomes are small endosome derived lipid nanoparticles (30-160 nm in diameter) secreted by exocytosis by
	most living cells and contain specifical cargos, such as RNAs, lipids, and proteins. The cargos amount and com
	position of exosomes depend on the cell type from which they are released, which making them useful for bio
	marker discovery and functional characterization. Exosomes have been isolated from mesenchymal stem cells
	(MSCs), which have captured great attention in regenerative and translational medicine over a few decades due
	to their low immunogenicity, high biocompatibility, differentiation capacity, potent immunomodulatory proper
	ties, and their ability to be favorably cultured and manipulated. Exosomes transfer functional cargos like miRN
	A and mRNA molecules, peptides, proteins, cytokines and lipids from MSCs to the recipient cells, which contr
	ibutes to the healing of necrotic tissues and organs or apoptotic cells HQExo TM exosomes derived from MSCs
Product Overview	could use as positive controls for exosome isolation and functional research, such as ELISA, FACS, WB. With
	the unique capacity of proliferation and differentiation, exosomes derived from MSCs represented a great oppo
	rtunity for regenerative therapeutic agents. For example, it has been reported that exosomes from cardiomyocyt
	es or stem/progenitor cells can promote cardiac repair and regeneration. Lyophilization is useful for a long-ter
	m storage at 4°C, and frozen liquid should be kept at -20°C to -80°C. Ultracentrifugation and precipitation tech
	niques are mainly used in exosome Isolation. It had been reported that both methods yielded extracellular vesic
	les in the size range of exosomes and included apoproteins, which can be used in downstream analyses. Nanop
	articles Tracking Analysis (NTA) is used for measuring exosome particles concentration, and WB or ELISA ca
	n be used in exosomal biomarkers analysis. Creative Biostructure standard exosome products guarantee higher
	purity and quality to meet our customer research.
	Lyophilized powder/ frozen liquid. Reconstitute lyophilized exosome by adding deionized water for a desired f
Form	inal concentration. Centrifuge before opening to ensure exosomes are at bottom, resuspend exosomes by pipett
	ing and/or vortex, please avoid bubbles. Centrifuge again and mix well for using.
Concentration	>1x10^10 particles
Storage	Lyophilized powder store at 4 °C. Frozen liquid store at -20°C to -80°C. Recommended to avoid repeated freez

e-and-thaw cycles.